If it's not what You are looking for type in the equation solver your own equation and let us solve it.
112=-16x^2+96x
We move all terms to the left:
112-(-16x^2+96x)=0
We get rid of parentheses
16x^2-96x+112=0
a = 16; b = -96; c = +112;
Δ = b2-4ac
Δ = -962-4·16·112
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-32\sqrt{2}}{2*16}=\frac{96-32\sqrt{2}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+32\sqrt{2}}{2*16}=\frac{96+32\sqrt{2}}{32} $
| x−4=11+6x | | 74-2x=28 | | 8x–6x=4 | | 6x=6x= | | 5^x2-5=120 | | -12=-6+5w | | Z3+4z2+9z+36=0 | | 2(k+15)=7k-30 | | 10^(2x+3=100 | | z3-6z2+10z-8=0 | | 30-9x=14+7x | | -60x=-20 | | 2x+35=x+13+10 | | -60x=20 | | -8+3(x+4)=3(4x+6)+5x | | 11x-16=-104 | | -2(1+4x)=-2-8x | | 15+8a=6a+1 | | -8(i+13)=-216 | | -8(i+13)=216 | | -12-15=3(2x+3) | | 5y+6=4.5y−1 | | 2x+9+4x+3=5+x+12 | | $(4q+3)(q+2)=0$ | | z4+5z3+8z2-2z-12=0 | | x^2=22,500 | | 10+18i+5i=33 | | 2(x-2)=4(2x+5) | | -11=v/5+4 | | 4.5g+7.8=-9.75 | | -8x=4x+36 | | 5+0.65=10+45x |